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SUMMARY

The evolution of correlated characters in natural populations depends on the demographic structure of
these populations. This is often considerably more complicated than the structure of populations typically
addressed by quantitative genetics, involving overlapping generations, age-dependent vital rates, and
large fluctuations in recruitment from year to year. It is important to know more about such evolution
because human exploitation of natural populations such as fishes is selective and has the potential to cause
major changes in their properties. Here the theory of quantitative genetics of correlated characters under
directional selection is extended to incorporate some demographic properties of non-equilibrium age-
structured populations.

Short-term evolution is described in terms of changes in a matrix of mean breeding values of the traits
at each age, and depends on the selection differentials in operation, together with the variances and
covariances of breeding and phenotypic values. Because the selection differentials depend on the current
mean phenotypic values which are themselves changing as each cohort grows older, the dynamics of mean
phenotypic values within cohorts are also followed. Together, the changes in mean breeding and
phenotypic values are sufficient to predict the short-term transient evolutionary dynamics of correlated
characters in non-equilibrium age-structured populations. The predictions are compared with the
dynamics observed in some randomly generated populations, and the application of the theory to
evolution in commercially exploited populations of fish is discussed.

related traits in heavily exploited fisheries. Moreover,

1. INTRODUCTION . .. .
there is known to be an additive genetic component to
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This paper is motivated by the need to understand how
natural fish stocks evolve through their exploitation by
man. There are often elements of size specificity in our
patterns of exploitation, to the extent that control of
net mesh size has become an important tool in the
regulation of fisheries (Garrod 1987). Since fishes of a
given age clearly vary in size (see, for example,

Bannister (1977); Daan (1986)), it is likely that fishing
will generate a substantial selection differential on size-
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size variation in certain cases (Gjedrem 1983; Gjerde
1986), so it is likely that a genetic response to selection
will occur in the form of a gradual change in the mean
value of these traits during subsequent generations.
At present, we have little idea about the evolutionary
dynamics of size and size-correlated traits expected
under the contemporary patterns of exploitation.
Consequently, it is not clear whether we will have a
serious problem on our hands in the forseeable future.
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214 R. Law Selection on correlated traits

Our ignorance is partly because the theory needed for
predicting such evolution has not been developed.
Quantitative genetics, which provides a basis for
describing evolution of continuous characters, has
grown up primarily in the context of animal and plant
breeding, where particular individuals with desirable
traits are selected as the parents of the next generation
(Falconer 1989). Change in quantitative characters
brought about by directional selection in natural
populations of fish (and many other organisms) is a
good deal more complicated than that in the popula-
tions typically considered by animal and plant breeders
for several reasons.

The first reason is that natural populations usually
have overlapping generations, and contain individuals
which reproduce at different rates at different ages.
These populations are often far from a demographic
steady state, with large fluctuations in numbers from
one cohort (yearclass) to the next. Second, fishing may
generate selection differentials on several traits, some of
which are expressed at the same age (for instance,
length and weight), and some in series (for instance,
length-at-age 1, length-at-age 2, etc.). Third, the
selection differentials themselves change, most ob-
viously with changes in the prevailing patterns of
fishing. Less obviously, they also change as the traits
evolve, because net meshes are set externally by
dialogue between fishermen and regulatory authorities,
rather than with reference to the current frequency
distributions of the traits.

There is, then, a need for a theory of quantitative
genetics for suites of correlated characters expressed at
arbitrary ages and undergoing directional selection in
non-equilibrium age-structured populations. In this
paper some elements of the theory are developed. The
building blocks for doing this are first the basic theory
of quantitative genetics (Bulmer 1980; Falconer 1989),
second the theory of selection on single traits in age-
structured populations (Hill 1974; Charlesworth
1980), and third the theory of evolution of correlated
characters simultaneously expressed (Lande & Arnold
1983). Some other approaches to the study of selection
on size in structured populations are given by
Kirkpatrick (1988) and Lynch (1988), and Lande
(1982) describes a theory for the evolution of quan-
titative characters in age-structured populations, given
the assumption of demographic equilibrium. The
theory described here specifically addresses the short-
term dynamics of correlated characters in non-
equilibrium populations, and allows the first-order
statistics (means) but not the second-order statistics
(variances and covariances) to evolve. Although the
theory is developed with the problem of fisheries in
mind, it should be more widely applicable to the
evolutionary dynamics of correlated traits in other
kinds of natural populations under directional selec-
tion.

1. THEORY
(a) Background

The theory addresses a population living in a
seasonal environment with reproduction occurring in
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pulses once a year. The sequence of events in each year
1s: census, the time at which characteristics of
individuals are measured, mortality, both selective and
non-selective, and reproduction at the end of the year.
Individuals live to a maximum age 7, so that at any
time there is a maximum of n+1 cohorts present
0,1,...,4,...,m).

We consider the evolution of m phenotypic traits in
the population. For the time being, it is assumed that
the traits are expressed both in females and in males;
this assumption is relaxed in a later section. Each trait
is expressed at no more than one age; this assumption
can be made without loss of generality, since characters
expressed at two or more ages can be treated separately
and assumed to have a perfect correlation. The traits
are numbered 1,2,...,¢,...,m, in order of the age at
which they are expressed, the sequence of traits
expressed at the same age being arbitrary.

Each individual at birth has a phenotypic value for
every trait. The individual may not survive for long
enough to express this phenotype, but the value does in
principle exist and could be measured if selective and
non-selective sources of mortality were eliminated.
Assuming, for simplicity, that there is no interaction
between genotype and environment, that dominance
deviations are absent, and that there are no non-
additive interactions between loci, then the phenotypic
values can be partitioned into a breeding value (the
mean value which the progeny of this individual will
have) and an independent environmental deviation.
The individual is therefore characterized both by its
breeding value and its phenotypic value for every trait.

Evolution is measured in terms of changes through
time in the mean breeding value of each trait. At the
time of census the mean breeding values of individuals
at age j are given by the column vector (d,,..., a,,)".
So the population is fully characterized by n+ 1 such
vectors, one for each age. These vectors are collected
together in order of increasing age, to give a matrix 4,
of order m by n+ 1, for the mean breeding values at the
start of year ¢:

It is necessary to keep track of the mean breeding value
of a trait even when it is not being expressed because
such a trait may still be changing due to selection
operating on traits which are currently expressed by
virtue of non-zero covariances in its breeding value
with these traits. Such changes depend on the
covariance matrix of breeding values G, of order m by
m:

var (a,) cov (ay,a,,)

G:

cov (ay,a,,) var (a,,)

Matching the matrix of mean breeding values, is a
matrix of mean phenotypic values, X, = [#,],, at the
start of year { also of order m by n+ 1. At birth (the first
column), these mean values are assumed to be the same
as the mean breeding values at birth. As the cohort
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grows older, the mean phenotypic value of trait i
changes, first due to selection operating directly on
trait ¢ itself at the age when it is expressed, and secondly
at this and other ages by virtue of the phenotypic
covariances between trait ¢ and other traits when
selection operates on the latter. These phenotypic
covariances are given by the matrix P of the same form
as G above.

The reason for keeping track of both the mean
breeding values and mean phenotypic values is that, as
a cohort grows older in the presence of directional
selection, the identity between mean breeding values
and mean phenotypic values disappears. Yet both play
a part in evolution because the selection differential
depends in part on the mean phenotypic value before
selection, and the response to selection depends on the
mean breeding value. One therefore needs both the
mean breeding values and the mean phenotypic values
to predict future states of the population.

(b) Selection differentials

Suppose that directional selection is applied to the
population shortly after the start of year ¢ The
observed selection differential on trait ; expressed at
age j is given by the difference between the mean
phenotypic value before and after selection at the age
at which the trait is expressed, s;;, = &5, — £,;,, where *
denotes ‘after selection’. The selection differentials are
taken together as elements of a matrix of selection
differentials, S,, of order m by n+ 1. Since a selection
differential clearly cannot be applied to a trait when it
is not being expressed, S, can only contain non-zero
elements at positions matching the age of expression of
the traits. But this in no way precludes changes at age
J in traits which are expressed at ages other than j.
Indeed such changes are to be expected as long as there
are non-zero covariances in their values and those of
traits under selection at age j, as shown in the next
section.

The observed change in the mean phenotypic value
of trait ¢ when expressed at age j is the outcome of
selection acting directly on trait ¢ and that acting
indirectly via other correlated traits also being ex-
pressed at age j. Following Lande & Arnold (1983), the
selection differentials on all traits expressed at age j in
year ¢ are partitioned into directional selection gradi-

ents, f,:
B.=P's,

where P, is the block from the phenotypic covariance
matrix which refers to traits expressed at age j and s,
is the column vector obtained by extracting from §, the
selection differentials on the traits expressed at age j.
Notice that there can be no selection differential or
selection gradient for traits not expressed at age j. To
obtain the selection gradients operating in all n+1
cohorts in year #, we use a modified form of the
phenotypic covariance matrix, P, of order m by m,
which contains non-zero elements only for those traits
expressed at the same age, comprising blocks on the
diagonal of P

P =diag (P,...,P,...).

Phil. Trans. R. Soc. Lond. B (1991)
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As long as P is non-singular, the matrix of directional
selection gradients operating at all ages in year ¢ is then
given by P7'S,. ‘

(¢) Mean values after selection

In general there are two kinds of trait within each
cohort in year ¢: those currently being expressed and
those not expressed. Both kinds of trait can change due
to selection in year ¢, the former as a direct result of
their own selection gradients and covariances with
other traits also being expressed (Lande & Arnold
1983), and the latter as a result of their covariances
with the former. The changes in mean breeding values
depend on the regression of breeding values on
phenotypic values; these changes are given by the
product GP™'S, once all n+1 cohorts have been
collected together. Thus the mean breeding values
after selection are given by

A¥ = A,+ GP'S,.

Similarly, the mean phenotypic values of unexpressed
traits can change. The changes in both expressed and
unexpressed traits are given by the product PP71S,
when all n4+1 cohorts are combined, leading to

X¥* = X,+PPS,

These equations assume that the breeding values and
phenotypic values have a multivariate normal dis-
tribution.

Clearly, many of the changes described by the
equations above are cryptic, unobserved because the
cohort is at an age when the trait is not expressed. Yet
we need to keep track of them all irrespective of when
they are expressed for several reasons. First the changes
are cumulative; as the cohort grows older, mean values
can depart more and more from their values at birth
whether or not the traits are expressed. Second, parents
reproducing at a given age j contribute their current
breeding values to their offspring; in this regard it is
immaterial whether or not traits are expressed at age j.
Third, the selection differentials on traits expressed at
age j depend in part on the mean phenotypic values of
these traits at age j; these values could be quite
different from the values at birth due to cryptic
changes before the cohort reaches age j.

It is worth noting the form of these equations in
certain special cases.

(@) One trait expressed in a single cohort population.
Here the relation for the mean breeding value takes the
form

" var (a)
af =a S
‘ *var (x) 7
or
var (a)
da, = b
var (x)

where 4a, is the selection response. This is the well-
known result from quantitative genetics (usually given
as R = £%S), the ratio of the two variances being the
heritability (£%) of the trait (Falconer 1989).

15-2
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216 R. Law Selection on correlated traits

(b) When all the traits are expressed at the same age,
the mean values are given by

A¥ = A,+GP'S,
X* = X,+85,

This is essentially the result given by Lande & Arnold
(1983), although it is given in a slightly modified form
to allow n+ 1 cohorts to be present.

(¢) When one trait only is expressed at each age and
m = n+ 1, the matrix of selection gradients is diagonal
with element : being s,;,/var(x;) where i =j+ 1. Thus
the change in mean breeding value of a trait £ not
expressed at age j (k # j+1) is s, cov (a;, a;)/var(x,).
It can be seen that this change depends only on the
directional selection gradient on trait ; and the
covariance of the breeding values of trait ¢ and trait £.

(d) Population dynamics

The final step in the sequence of events in year ¢ is to
generate a newborn cohort and to increase the age of
each cohort already present by one year. To take the
population through this step, we define a transition
matrix T;, of order n+1 by n+1:

by 1 0
e pn—l O 1
p, 0 0J:

Here the element p,, is the probability with which a
newborn individual inherits a given gene from a parent
of age j so that Xp, = 1, and the line of elements of
value unity above the leading diagonal advances the
age of all cohorts already present by one year, except
the cohort at age n which disappears (Hill 1974;
Charlesworth 1980). Notice that Charlesworth’s (1980)
notation is adopted so that the sum of each column is
unity; 7; is then the transpose of a stochastic matrix
(Lancaster 1969). The matrix is a simplified form of
that used by Hill (1974) and Charlesworth (1980)
because it does not treat separately the contributions of
females and males; some relaxation of this assumption
is possible and is considered separately below.

The element p;, of T, must allow for the rate of
reproduction at age j (4;, assumed for simplicity to be
independent of year ¢ here), the number of individuals
in the cohort at birth and the risk of mortality from
birth up to the time of reproduction at age 7, including
all selective as well as non-selective mortality. Thus

— NJtVT/;th
pjt_EMtW b" (1)
J

ity

where N, is the number of individuals surviving at the
start of year ¢ and is defined recursively by

th = Nj—l,t—l I/T/;,—l,c—r (2)

The term W, is the proportion of individuals aged j
which survive from the start of year ¢ to the time of

reproduction, referred to as the mean fitness below.

Phil. Trans. R. Soc. Lond. B (1991)

Evidently we can expect p;, (and hence T;) to vary from
year to year, depending on factors such as fluctuations
in yearclass strength, changes in fishing patterns, and
the previous history of selection.

In keeping with the focus on short-term dynamics, it
is assumed that the distributions of breeding and
phenotypic values of newborn individuals have the
same covariance matrices G and P as previous cohorts.
Additionally, we have to assume that the distribution
of breeding values is multivariate normal in newborns;
this can be no better than an approximation because
the distribution is obtained as a mixture of the breeding
values of parents of different ages and these in general
would have different means. Given these assumptions,
the weightings in the first column of 7, generate the
mean breeding values of newborn individuals when
premultiplied by the matrix of mean breeding values
after selection (AF) (Hill 1974; Charlesworth 1980). At
the time of reproduction there are no changes in mean
breeding values within cohorts older than age 0, so
elements above the leading diagonal of T; have the
value unity. Thus the complete recurrence relation for
the dynamics of the mean breeding values from census
{ to t+1 is given by

A, = (Az‘l'GP_l S,) T. (3)

This equation shows in a simple explicit way how the
evolution of correlated characters depends on the
directional selection in operation (P718,), the genetic
structure (4, and G) and the demographic properties
(T,) of the population.

The matrix for the mean phenotypic values at time
t+ 1 is obtained in two parts. The first part makes use
of the matrix product T; C to increase the age of cohorts
0,...,n—1 by one year; C'is a diagonal matrix of order
n+1 by n+1 with elements of value unity except for
the first which has value zero. The second part inserts
the column of mean phenotypic values of newborn
individuals; this is by definition equal to the first
column of A4, ,, because the mean phenotypic values
and mean breeding values must be the same before any
selection takes place. It is given by the matrix product
A,., €, where C’ of order n+1 by n+1 has the first
element with value unity and zeros elsewhere. Thus the
full equation is given by

X = (Xt+PP_1 S)T,C+A4,,C (4)

The first part of the right hand side in effect keeps track
of the within-generation dynamics of the mean
phenotypic values, and the second part provides initial
values for each new cohort.

Equations 3 and 4 can be used iteratively to predict
the evolution of correlated traits in the short term
under directional selection in non-equilibrium age-
structured populations. Equation 3 alone is sufficient to
predict the response to a single round of selection.
However, if we wish to project the evolutionary
dynamics further into the future under continuing
selection, the mean phenotypic values need to be
modelled as well (equation 4). The reason for this is
that the selection matrix S, requires information on the
mean phenotypic values of traits before selection at the
age when they are expressed. These mean values may be
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quite different from those at birth by virtue of non-zero
phenotypic covariances with other traits expressed and
selected earlier in life.

(e) Asymptotic properties

Suppose that a single bout of selection occurs in year
0 and none thereafter. What will be the asymptotic
response to this selective event? Assume that there is a
steady state matrix T describing the dynamics of the
population in the absence of selection. Although
selection acts in year 0 only, there is still a sequence of
n iterations at the beginning during which the
transition matrix is observed to change as the selected
cohorts work their way through the population (cf. Hill

1974). Denoting these matrices T, T;,..., T, ;, we
have for ¢t > n
A, = (A)+GP'S)T,.. T, ,T"™ (5)

It is known from the theory of stochastic matrices that
T” = uva™!, where v is the left dominant eigenvector
of T, scaled so that all elements are unity, u is the right
dominant eigenvector scaled with the first element at
unity (Lancaster 1969), and the term « is the mean
generation time (Hill 1974; Charlesworth 1980). The
asymptotic mean breeding values (4,) are thus given

by
A, = (A,+GP'S)T,... T, ,uva™. (6)

oo}

It is unnecessary to keep track of the dynamics of mean
phenotypic values here, since the selection differentials
are taken to be zero after year 0.

An asymptotic result for the change in mean
breeding values from one year to the next (4R_) can
also be determined under the assumption of constant
selection differentials §, = § for all ¢. As before there is
a sequence of n iterations during which the transition
matrices are changing as cohorts present at the start
work their way through the population, denoted by
T, ..., T, ;. Subsequently every cohort experiences
the same selective mortality so the transition matrix is
constant (denoted T), ie. T, =T, for ¢t >n. (It is
assumed that all cohorts start life with the same
number of individuals.) As {00 the change in mean
breeding values becomes

n—1
AR, = GP”IS{<Z T.. Tn_l) (L—-D+ T}
j=0

X us vS a;l’ <7>
where I is the identity matrix of order n+1 by n+1, v,
is the left dominant eigenvector of T, u, is the right
dominant eigenvector, and a«, is the mean generation
time.

How useful the asymptotic response is under
continuing selection is debatable. It ignores the change
in mean phenotypic values within cohorts (equation
4). It makes no allowance for changes in the selection
differentials which one would expect as the mean
breeding values evolve. Neither does it allow for the
changes in population dynamics which come about as
the selection differentials change. On the other hand,
Hill (1974) pointed out that in the context of a single

Phil. Trans. R. Soc. Lond. B (1991)
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quantitative character AR, can converge rapidly to
AR, so the asymptotic result could provide a good
approximation to 4R, much of the time.

(f) Sex-dependent dynamics

The assumption that females and males have the
same evolutionary dynamics can be relaxed in various
ways. To deal with sex-specific processes, Equations 3
and 4 need to be recast so that the mean breeding
values and mean phenotypic values are defined
separately for each sex. The values are aggregated into
block matrices of order m by ng~+n,+2

A,=[4,4;], and X, =[X X,

These treat females and males as separate cohorts, and
for the sake of generality we may allow their maximum
lifespans to differ so that there are different numbers of
cohorts of females and males, n,+1 and n;+1,
respectively. All traits are assumed to occur in both
sexes, although it will be seen below that some traits
may be expressed in one sex alone.

The transition matrix needs to take into account the
contribution of genes that females and males separately
make to their female and male offspring. It is given by
the block matrix

Pe|% T,
Te Tyl

of order no+n;+2 by no+n,+2 (Hill 1974; Charles-
worth 1980), the blocks being of the form given by
Charlesworth (1980). The block T5,, of order n,+ 1 by
ny+1, represents the transitions from females at time ¢
to males at time {4+ 1, and the other blocks are defined
similarly.

With separate sexes formulated as above, the
dynamics of mean breeding values are given by

/ft+1 = (At+ GP! 5») Tr (8)

where the selection differentials are given separately
for each sex as S, = [$,8,], in a matrix of order m by
ng+n .6+2.' The dynamics .Of mean phenotypic values
are given in two parts, as in equation 4:

Xz+1 = (Xz+PP_1 gc) T:é‘l'/itu é/, 9)

where € (respectively €’) of order ny+n s+2 by
ng+n,+2is a diagonal matrix with elements of value
unity (respectively zero) except that in column 0 and
no+1 they have value zero (respectively unity). Note
that T; like T; is the transpose of a stochastic matrix so
the asymptotic results obtained earlier still apply with
minor modifications.

By using equations 8 and 9, several extensions of the
earlier sex-independent dynamics become possible.

(¢) Vital rates dependent on sex

It is often the case that females and males of a given
age have different vital rates; for instance, in the cod
(Gadus morhua) males frequently mature at an earlier
age than females (see, for example, Jorgensen (1988)).
Even if the sexes experience the same selection
differentials (Sg, = S,,), the evolutionary dynamics are
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218 R. Law  Selection on correlated traits

influenced by their different vital rates because their
relative contributions to breeding values of newborns
are weighted differently over age. The matrix T} keeps
track of these different weightings. Notice however that
sex-dependent vital rates would not on their own lead
to differences between female and male cohorts in
mean breeding and phenotypic values if the sex ratio of
offspring is independent of parental age.

(12) Selection differentials dependent on sex

Differences between female and male cohorts in
mean breeding values and phenotypic values come
about if the sexes experience different selection differ-
entials (S,, # S,,). Behavioural differences between the
sexes could be responsible for this. Alternatively,
different selection pressures on the sexes could ac-
company their different vital rates. For instance,
selection pressures associated with spawning are only
experienced by mature individuals; if, as in the case of
the Northeast Arctic stock of cod, females and males
start their annual migrations to the spawning grounds
at different ages (Bergstad et al. 1988 ; Jorgensen 1988),
there are likely to be differences between the sexes in
the selection differentials. A detailed treatment of the
evolutionary dynamics of such cases would entail
separate estimation of the female and male elements of
S, and the use of equations 8 and 9.

(122) Sex-dependent expression of traits

Certain traits are expressed in one sex only. Clearly,
there can be no selection differential on such a trait in
the sex in which it is not expressed, and in general this
leads to the property: Sy, # S,. To the extent that the
genes controlling the trait are autosomal, both sexes
contribute to the value of the trait in offspring, even
though expression is absent in one sex. Equations 8 and
9, which keep track of both sexes provide an
appropriate method of describing the evolutionary
dynamics, on the understanding that the selection
differential must always be zero in the sex in which the
trait is not expressed. (Mean phenotypic values for the
trait do not exist in the sex in which it is not expressed ;
these are left in equation 9 for notational convenience
only and have no effect on the evolutionary dynamics.)

3. EXAMPLES

To show the path of evolution predicted by the
model, two numerical examples are given below. In
both cases the path predicted is compared with that
observed in populations in which the life of every
individual is followed explicitly. The breeding and
phenotypic values of these individuals are generated by
using pseudo-random numbers, to provide an in-
dependent check on certain aspects of the model.
Although it would be preferable to use data from
exploited fish stocks in these examples, the information
needed is not all available (see concluding comments).
Numerical values have therefore been chosen simply to
reflect a declining rate of growth with increasing age,
and the probable low heritability of body size.

Phil. Trans. R. Soc. Lond. B (1991)

Table 1. Numerical values for parameters used in modelling
the evolutionary dynamics of four quantitative traits. See
example 1

2 2 2 2

4,=|10 10 10 10} = X
14 14 14 14
16 16 16 16

0.1 01 0.1 0.1 [0.1 0 0 O
P= 101 40 40 40]|P=|0 40 0 0
0.1 40 6.0 6.0 0 0 60 0
| 0.1 40 60 8.0 0 0 0 80
0.02 0.02 0.02 0.02 0 1 0 0
G= (002 080 080 080|T=l o0 1 o0
0.02 080 1.20 1.20 T o0 0 1
[0.02 080 1.20 1.60 1 0 0 o0

(a) Example 1: response to a single round of
selection
(i) Model

Suppose that there exists a population of fish in
which individuals live to a maximum age of three years
(n = 3) and are subjected to length-specific harvesting.
Since exploitation depends only on length and not on
age, there are four traits which could in principle be
under selection: length-at-age 0,...,length-at-age 3
(m = 4). Table 1 gives assumed values at the start of
year 0 for the mean breeding values and mean pheno-
typic values (4, and X, respectively), the additive
genetic covariances and phenotypic covariances (G
and P, respectively), and the transition matrix T. We
make the assumption that there has been no selection
recently, so that 4, = X,. With the additive genetic
and phenotypic variances given, the heritability of
length at each age is 0.2. Notice that the transition
matrix is given under the assumption that, apart from
changes due to selection, it remains constant from year
to year; the changes required to account for selection
are described below.

We suppose that selection occurs in year 0 due to
exploitation. What mean breeding values are expected
at the start of year 1,2,..., arising from this single
round of selection?

The first step is to define the selection differential on
each trait. In general, the mean phenotypic value for
trait ¢ in individuals of age j after selection in year ¢ is

i?;z = I/T/j_tl f fxm W("j;)f(sz) dx]’b (10)
where
W, = f fW(xj»f(xﬂ) da. (11)

Here f(x,,) is the joint probability distribution for all
traits expressed at age j, and W(x,) is the cor-
responding probability of survival; W, is the mean
fitness for an individual of age j in year {4 and the
integration is over all phenotypes expressed at age ;.
In the example here, selection occurs only in year 0,
so the subscript ¢ is dropped from equations 10 and 11,
as is the subscript ¢ since ¢ = j+ 1. Suppose that the
threshold length at which individuals become liable to
harvesting is £ cm, and that the probability of surviving
the period of harvesting is & for vulnerable individuals.
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Assuming that the distributions of phenotypes are
normal with means #; and variances o7, and rescaling
so that y, = (x,—%,)/0; and k, = (k—%,)/0o;, we have

_ 1—6 5
it = 2 L0 ()

where

__ 7]
- |

1 v
—2i\dy.
wwe"p( 2) b
+00 1 _7/2
6 —Zi)dy..
" J VQwCXp( 2) &

This gives the selection differential expected on the
trait expressed at age j as §; 0. It is assumed that
harvesting is the only cause of mortality; the general-
ization to incorporate non-selective mortality is
straightforward.

Suppose, for the sake of argument, that the threshold
length is £ = 14 cm, and that a proportion 6 = 0.4 of
the vulnerable individuals survive harvesting. Then
the matrix of selection differentials in year 0 is

, = diag(0 —0.066 —0.838 —0.970). Because there is
only one trait expressed at each age, the matrix P is
obtained by replacing with zeros all apart from the

(a)
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o
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3
< 39l
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3
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=] ————
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diagonal elements of P (table 1). The inverse P! is
then

P =diag (10 0.25 0.167 0.125),

and the matrix of selection gradients operating on each
trait at each age in year 0 is

P'S,=diag(0 —0.016 —0.140 —0.121).

The next step is to make allowance for the effects of
the selected cohorts on the elements in the first column
of the transition matrix (equations 1 and 2). It is as-
sumed that recruitment is a constant N so that N, = N
for all t>0 and at t=0 Nj;=N for j=0,...,3.
Since selection occurs in year 0 only, the mean fitness
W, =1 for t>0. At =0, the mean fitnesses are 1,
0.986, 0.7 and 0.544 for ages 0, 1, 2, and 3, respectively.
As there is no non-selective mortality, the &;s are
proportional to the elements in the first column of T
(table 1). From equations 1 and 2, the first columns of

the transition matrices Tp, T;, T, T, ..., are then
year 0: (0 0.245 0.348 0.406)7,
year 1: (0 0.197 0.389 0.414)7,
year 2: (0 0.167 0.336 0.497)7,
year 3: (0 0.167 0.333 0.5)".
(6)
16.0
3
1594
14,0 -
2
13.9%
10.0
1
9.9L
200 o-g-9800000000ge®e 0
1.98[
0 5 10 15
TIME /YEARS

Figure 1. Response to a single round of directional selection on body length of fish in year 0. The population comprises
four age classes and selection can take place at each age. The graphs give the mean breeding values for length-at-
age 0, 1, 2, 3 in individuals at birth. (a) Timecourse for population predicted by equation 5; discontinuous lines are
asymptotic values predicted by equation 6. (b) Timecourse observed in simulated populations in which the lives of
individuals were followed explicitly as described in the text; each point gives the mean (+1 standard error) of 5

simulations.
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220 R. Law Selection on correlated traits

The evolutionary dynamics of the population given
by equation 5 are shown in figure 1 a. There is very little
change in length-at-age 0 because there is no selection
operating on this trait directly and the additive genetic
covariances with the other traits on which selection
does act are very small. On the other hand, there are
substantial changes in the other traits. The oscillations
in these come about because all parents from the 1, 2
and 3-year-old cohorts contribute to the mean breeding
value of offspring, yet their mean breeding values have
been altered to different extents by selection in year 0,
depending on which trait was expressed in year 0. For
instance, the mean breeding values of the 0-year-old
cohort were unchanged by selection in year 0; as this
cohort grows older and contributes increasingly to the
production of newborn individuals, the mean breeding
values of newborns increase (years 2 and 3). None the
less, the oscillations are strongly damped, and the
population is already close to its asymptotic values
(1.999, 9.96, 13.94, 15.93, obtained from equation 6)
by year 15.

(it) Populations simulating the lives of individuals

The dynamics expected from theory are compared
with those observed in simulated populations in which
the lives of individual fishes were followed explicitly.
Each individual fish was assigned at birth a breeding
value for length-at-age 0,...,3 (ap...,4q;), defined
recursively by

o =a_,+g_, for j>0.

Here g; 4 is the increment in length from age j—1 to
age j, taken to be a random variable with a normal
distribution, and a, is the length of a newborn
individual, also a normal random variable. Each
individual was also assigned at birth a phenotypic
value for length-at-age 0,...,3 (x,,...,%,):

Xg = ayte,

x =a;+te, for j>0,

where ¢is a random deviation arising from effects of the
environment on newborn individuals, and ¢, , is the
random environmental deviation which comes about
between age j—1 and age j. These environmental
deviations are assumed to have normal distributions
with zero means. The random variables a,, gy, g1, &35 ¢,
¢y, ¢, and ¢, are independent but in view of the way they
are combined to give length-at-age O,...,3, the
breeding and phenotypic values ay,..., a5, %, ...,%;,
have positive covariances.

All simulations were started with 5000 individuals in
each cohort (20000 individuals all told). Parameters
for the normal distributions were set initially as in table
2, giving matrices of expected values 4,, X,, G and P
the same as those in table 1. In year 0, a proportion 0.6
of the individuals with a currently expressed pheno-
typic value > 14 cm were chosen at random for
harvesting. To put it another way, the probability of
removing an individual aged j with a phenotypic value
= l4cm at age j (j=0,...,3) was 0.6. The harvest
pattern is therefore equivalent to that used in the
model above (6 = 0.4, £ = 14 cm). After year 0, there
was no further harvesting.

Phil. Trans. R. Soc. Lond. B (1991)

Table 2. Mean () and variance (6®) of normal distributions
Jor generating values of the independent random variables in
populations simulating the lives of individuals

(The random variables are: a,, length-at-age 0; g, , growth
increment from age j— | to age j; ¢, environmental deviation
of newborn individuals; ¢; ;, environmental deviation from
agej—1 to age j. The values were obtained using the pseudo-
random number generator in the statistical package Minitab
(Ryan et al. 1985).)

2

w oo Lo
a 2 0.02 e 0 0.08
g% 8 078 6 0 312
g 4 0.4 e O 1.6
g% 2 04 ¢, 0 16

At the end of each year, reproduction took place,
giving rise to a newborn cohort of 5000 individuals.
The breeding and phenotypic values of these new
individuals were generated in four steps. First, the
breeding value of length at each age of each surviving
parent was weighted by the current contribution of the
parent to reproduction. To match the elements of T in
table 1, one can suppose for instance that 0, 1, 2, 3
year-old parents contribute to 0, 10, 20, 30 offspring,
respectively. (The generalization to randomly distrib-
uted numbers of offspring at each age does not
introduce new behaviour to the dynamics of mean
breeding and mean phenotypic values.) Second, the
mean and variance of each weighted distribution of
breeding values was determined ; there are four of these
distributions, one for each length-at-age. The means
and variances were then used to obtain parameters for
the normal random variables a,, g,, g, g, in the
newborn cohort. Third, given these parameters, 5000
values of a,, g4, g1, g, were generated, and summed as
described above to give breeding values a,, a,, a,, a,
for each individual in the new cohort. The intermediate
step involving the growth increments retained the
general additive genetic covariance properties of the
population, but allowed both the means and the
variances of the breeding values to change from one
generation to the next. Fourth, each newborn in-
dividual was assigned a phenotypic value for length-at-
age 0, ..., 3 by incorporating environmental deviations
€, €y, €1, €5, taken from independent normal distributions
as described above; the parameters for these distri-
butions remained unchanged (table 2).

Figure 15 gives the average behaviour (+ 1 standard
error) of five simulated populations. The mean
breeding values for length-at-age 1, 2 and 3 undergo
damped oscillations as expected from theory (figure
la) and overall there is close agreement between the
theoretically predicted behaviour and that observed in
practice.

(b) Example 2: response to repeated selection
(i) Model

In this model it is assumed that selection, rather than
being confined to year 0, occurs in every iteration.
Apart from this, the population has the same properties
as those in the previous example, with 4,, X, G, P and
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Figure 2. Selection differentials on body length of fish under continuing directional selection. The population consists
of four age classes and selection differentials are generated at age 1, 2 and 3, fish at age 0 being too small to be caught.
(a) Timecourse predicted by model. () Timecourse observed in simulated populations in which the lives of individual
fish were followed explicitly as described in the text; each point gives the mean of 5 simulations, all standard errors
being less than 0.02 cm.
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simulated populations in which the lives of individuals were followed explicitly as described in the text; each point
gives the mean of 5 simulations, all the standard errors being less than 0.02 cm.

T as in table 1. As before, selection takes the form of The dynamics of mean breeding values are given by
removing individuals of length > 14 cm (k£ = 14 cm) equations 3 and 4. In using these equations, we need to
with probability 1—6 = 0.6, but this now happens bear in mind that the matrix of selection differentials S,
every year. changes from year to year as the mean phenotypic
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222 R. Law Selection on correlated traits

values change. As noted earlier, change in the mean
phenotypic value of a trait j (and hence S,) comes
about within a cohort as it ages due to selection
operating on other correlated traits expressed before
trait j, and also between cohorts as the mean
phenotypic value of trait j in newborn individuals
changes in concert with their mean breeding value.
The time course of the selection differentials, shown in
figure 2a, shows small changes at age 1 and 3 and a
somewhat larger reduction at age 2; there is no
selection at age 0. The transition matrix T; also changes
from year to year, depending on the proportions of
each cohort which have survived selective mortality up
to the present time. Equations | and 2 keep track of
these changes. In general, 7, continues to change as
long as the population is evolving, because the mean
fitnesses 1}, on which the p,s depend are themselves
changing.

The dynamics of the mean breeding values at birth,
determined iteratively from equations 3 and 4, show a
continuing decline in mean length-at-age 1, 2 and 3
(figure 3a), corresponding to the continuing selection
against large individuals. There is very little change in
length-at-age 0, as one would expect from the lack of
any selection differential on the trait and the very low
covariance of its breeding value with those of other
traits.

There is a close match between the response to
selection obtained by using equations 3 and 4 and the
response predicted by the asymptotic approximation
(equation 7), despite the additional assumptions of the
latter. Consider for instance the iteration (= 10 to
t=11. The change in mean breeding values obtained
from equations 3 and 4 is

—0.001 —0.001 —0.001 —0.001
4 4 — | 0089 —0037 —0.040 —0.041
e —0.057 —0.054 —0.059 —0.060

—0.064 —0.059 —0.065 —0.066

Assuming that § = 8§, T, = T}, and that by ¢ = 10 the
system is at steady state with respect to population
dynamics, the asymptotic response is

AR, = GP'Su v, a;?,

S0
—0.001 —0.001 —0.001 —0.001
AR — —0.039 —-0.039 —-0.039 —0.039
* —0.057 —0.057 —0.057 —0.057 |’
—-0.063 —0.063 —0.063 —0.063

which corresponds closely to the matrix above.

(22) Populations simulating the lives of individuals

The dynamics predicted from the model are com-
pared with those observed in populations containing
individuals with randomly generated breeding and
phenotypic values. These populations were constructed
in precisely the same way as those in the previous
example, except that harvesting took place every year,
removing as before 0.6 of the individuals with a
currently expressed phenotypic value > 14 cm.

Phil. Trans. R. Soc. Lond. B (1991)

The behaviour predicted by the model can be no
more than an approximation to the average dynamics
of these simulated populations because the latter allow
changes in the covariance matrices to come about.
Such changes arise for two main reasons. First, as a
single cohort ages, selection alters the distributions of
phenotypic values, and hence the distributions of
breeding values. By the time the cohort is old, its
observed covariance matrices can therefore differ
appreciably from P and G. Second, the variances of
breeding values in newborn cohorts are free to change
under selection, whereas they are assumed to be
constant in the model.

One of the effects of the changing distributions of
phenotypic values within cohorts is that the phenotypic
variance of length-at-age 3 had already been reduced
by the age at which the trait was expressed in the
selected populations. This reduction came about
through the positive phenotypic covariance of the trait
with those expressed earlier in life, in conjunction with
the selection operating at these earlier ages. A
consequence was that the observed selection differ-
ential at age 3 was about 109, less in absolute value
than that predicted (figure 25). Apart from this, there
is a close match between the observed and predicted
selection differentials over the course of time. For
short-term prediction of evolutionary dynamics the
discrepancy in the selection differential makes little
difference (figure 35), but the match between the
observed and predicted dynamics would become less
close in the longer term.

4. CONCLUDING COMMENTS

Equations 3 and 4 provide a model for predicting the
evolution of a set of correlated quantitative traits in a
non-equilibrium age-structured population. There are,
however, some caveats about the model which need to
be borne in mind. First, there is an assumption that the
phenotypic value of an individual can be partitioned
into a breeding value and an independent environ-
mental deviation. Interactions between genotype and
environment, dominance deviations and non-additive
interactions between loci are not considered, and it
should be borne in mind that long-term directional
selection could mould the genetic architecture gen-
erating non-additive interactions within and between
loci (Lawrence 1984). Second, it is assumed that there
is a scale on which breeding values, environmental
deviations and phenotypic values have a multivariate
normal distribution. For the breeding values of
newborns this cannot be better than an approximation
because these distributions are obtained by mixing the
distributions from parents of different ages which in
general would have different means.

Another important assumption is that the pheno-
typic value of an individual has no effect on fitness in
the absence of the directional selection pressure
applied. Since some traits such as length-at-age are
often correlated with vital rates, extension of the theory
to relax this assumption would be well worthwhile (see
Lande 1982).

The theory is aimed at predicting short-term
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transient evolutionary dynamics, because it is such
changes which are of most interest in the management
of exploited stocks of fish. The focus is therefore on first-
order statistics, while holding the second-order statistics
constant. Second-order statistics can however change
in the short term. First, when directional selection is
introduced, it immediately generates gamete phase
disequilibrium, causing a reduction in the variances
and covariances of breeding values (Falconer 1989).
The effect of this is small as long as heritabilities are
low and the selection differential i1s not too large.
Second, when the same character is expressed at a
series of ages and experiences directional selection at
each age, its phenotypic variance is diminished at each
stage and may be substantially reduced by the time the
cohort is old. Over longer periods of time, second-order
statistics would be expected to change as gene
frequencies change, and such changes would need to be
considered in modelling the longer-term evolutionary
dynamics.

Equations 3 and 4 identify the information needed
from fisheries to predict the ways in which exploited
stocks evolve. Some pieces of information are more
readily obtained than others. For instance, by com-
bining knowledge of the life history of a stock with
estimates of the numbers at age routinely collected in
the management of some fisheries, an estimate of T;
could be made. In addition the matrix of selection
differentials S, could be estimated by direct monitoring
of the mean phenotypic values of traits before and after
a period of selection. Since P contains only the
variances and covariances of traits at the age when
they are expressed, this matrix can also be estimated
from the phenotypic values prior to selection as can the
matrix of directional selection gradients P71 §,. On the
other hand, there is much more uncertainty over the
matrices which deal with breeding values, 4, and G;
these require data from breeding experiments at
present unavailable in commercially exploited fish
stocks. Still more problematic is the full phenotypic
covariance matrix P; to estimate this we need the
phenotypic values of individuals from a control,
unharvested population. Until more is known about
A,, G and P, there is bound to be much doubt about
the evolutionary dynamics of exploited fishes.

I thank D. R. Grey, C. A. Rowell and T. K. Stokes for help
and discussion concerning this work, and B. Charlesworth,
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Phil. Trans. R. Soc. Lond. B (1991)

R. Law 223

Selection on correlated traits

REFERENCES

Bannister, R. C. A. 1977 North Sea plaice. In Fisk population
dynamics (ed. J. A. Gulland), pp. 243-282. London: Wiley.

Bergstad, O. A., Jorgensen, T. & Dragesund, O. 1987 Life
history and ecology of the gadoid resources in the Barents
Sea. Fish. Res. 5, 119-161.

Bulmer, M. G. 1980 The mathematical theory of quantitative
genetics. Oxford: Clarendon Press.

Charlesworth, B. 1980 FEvolution in age-structured populations.
Cambridge University Press.

Daan, N. 1986 Age structured models for exploited fish
populations. In The dynamics of physiologically structured
populations (ed. J. A. J. Metz & O. Diekman), pp. 377-392.
Berlin: Springer—Verlag.

Falconer, D. S. 1989 Introduction to quantitative genetics (3rd
edn). Harlow, U.K.: Longman.

Garrod, D. J. 1987 The scientific essentials of fisheries management
and regulations. Laboratory Leaflet 60, Ministry of Agri-
culture Fisheries and Food, Directorate of Fisheries
Research, Lowestoft.

Gjedrem, T. 1983 Genetic variation in quantitative traits
and selective breeding in fish and shellfish. Aquaculture 33,
51-72.

Gjerde, B. 1986 Growth and reproduction in fish and
shellfish. Aquaculture 57, 37-55.

Hill, W. G. 1974 Prediction and evaluation of response to
selection with overlapping generations. Anim. Prod. 18,
117-139.

Jorgensen, T. 1988 Long-term changes in age at sexual
maturity of the Northeast Arctic cod (Gadus morhua L.).
International Council for the Exploration of the Sea, Paper CM
1988/G:42.

Kirkpatrick, M. 1988 The evolution of growth patterns and
size. In Size-structured populations : ecology and evolution (ed. B.
Ebenman & L. Persson), pp. 13-28. Berlin: Springer—
Verlag.

Lancaster, P. 1969 Theory of matrices. New York: Academic
Press.

Lande, R. 1982 A quantitative genetic theory of life history
evolution. Ecology 63, 607-615.

Lande, R. & Arnold, S.]J. 1983 The measurement of
selection on correlated characters. Evolution 37, 1210-1226.

Lawrence, M. 1984 The genetical analysis of ecological
traits. In Evolutionary ecology (ed. B. Shorrocks), pp. 27-63.
Oxford: Blackwell.

Lynch, M. & Arnold, S.]J. 1988 The measurement of
selection on size and growth. In Size-structured populations :
ecology and evolution (ed. B. Ebenman & L. Persson), pp.
47-59. Berlin: Springer—Verlag.

Ryan, B. F., Joiner, B. L. & Ryan, T. A.
handbook. Boston: PWS-Kent.

1985 Minitab

Received 21 August 1990 ; accepted 12 September 1990


http://rstb.royalsocietypublishing.org/

